Error Probabilities for Halfspace Depth
نویسندگان
چکیده
Data depth functions are a generalization of one-dimensional order statistics and medians to real spaces of dimension greater than one; in particular, a data depth function quantifies the centrality of a point with respect to a data set or a probability distribution. One of the most commonly studied data depth functions is halfspace depth. It is of interest to computational geometers because it is highly geometric, and it is of interest to statisticians because it shares many desirable theoretical properties with the one-dimensional median. As the sample size increases, the halfspace depth for a sample converges to the halfspace depth for the underlying distribution, almost surely. In this paper, we use the geometry of halfspace depth to improve the explicit bounds on the rate of convergence.
منابع مشابه
Generalization of Halfspace Depth
A data depth is one of the most important concepts of nonparametric multivariate analysis. Several depth functions have been introduced since 1980. The halfspace depth is probably the most popular. This depth function has many desirable properties (they are stated in the general definition of statictical depth function). We show a way of generalization of the halfspace depth finding a broader c...
متن کاملHalfspace Depth and Regression Depth Characterize the empirical Distribution
For multivariate data, the halfspace depth function can be seen as a natural and affine equivariant generalization of the univariate empirical cdf. For any multivariate data set, we show that the resulting halfspace depth function completely determines the empirical distribution. We do this by actually reconstructing the data points from the depth contours. The data need not be in general posit...
متن کاملWeighted halfspace depth
Generalised halfspace depth function is proposed. Basic properties of this depth function including the strong consistency are studied. We show, on several examples that our depth function may be considered to be more appropriate for nonsymetric distributions or for mixtures of distributions.
متن کاملInfluence Functions for a General Class of Depth-Based Generalized Quantile Functions
Given a multivariate probability distribution F , a corresponding depth function orders points according to their “centrality” in the distribution F . One useful role of depth functions is to generate two-dimensional curves for convenient and practical description of particular features of a multivariate distribution, such as dispersion and kurtosis. Here the robustness of sample versions of su...
متن کاملWeighted Data Depth and Its Properties
The paper deals with nonparametric methods for analysis of multivariate data. Generalization of the halfspace depth, so called weighted halfspace depth, is indroduced. We consider its properties with respect to the weight function in its definition. One particular property of our interest: points out of the support of probability measure should have depth equal to zero.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.04323 شماره
صفحات -
تاریخ انتشار 2016